California Burning

Gary Hart Photography: Oaks and Smoke, Sierra Foothills, California

Oaks and Smoke, Sierra Foothills, California
Sony a7RIV
Sony 100-400 GM
1/30 seconds
F/6
ISO 100

That my hometown topped 110 degrees several days last week isn’t especially newsworthy—100+ degrees happens maybe 20 times in an average Sacramento summer, and we hit 110 for a day or two every two or three years. But adding thunderstorms to the extreme temperatures is indeed unprecedented for California. And with the thunderstorms came the fires that have filled the sky with thick smoke and given the state an end of days vibe.

The fires are still burning, torching our forests and hills to the tune of 1,000,000+ acres burned, with no end in sight. I’m fortunate to live near the Sacramento–San Joaquin River Delta, where we don’t really need to worry about fire (but you might want to check on me if you hear about floods in Sacramento). Even though the closest fire is about 30 miles away, the smoke here is oppressive, at times so thick that it’s not safe to go outside.

To say this year has been a challenge for all of us would be an understatement. We each have our own way of coping, and one thing that has helped me maintain my sanity during the pandemic is getting out and walking the neighborhood several times each day. I’ll start a typical day with a pretty brisk 3 to 5 mile walk, then throughout the day, whenever I start to feel a little cabin fever setting in, I’ll take a more leisurely 1 or 2 mile walk—by the end of most days I’ve logged 8 to 10 miles, then I go to bed, wake up, and do it again.

But with the heat and smoke driving me inside 24×7, by the middle of last week I was beginning to feel a little crazy. So on one particularly smoky day (they all run together), I loaded my camera gear into the car, put the AC on recirculate, and headed to the hills. I had no illusions that I’d escape the smoke, but I just needed to see something different. The plan was to find some oaks against the sky and make some pictures of the orange sun.

I’d hoped to find trees far enough from the road that I could supersize the sun with my Sony 200-600, but after driving around a bit searching for elevated trees that I could align with the sun, I settled for this pair that was maybe 100 yards away. There was no parking here, and the rutted shoulder dipped steeply and only offered about a foot more than a car-width between the pavement and barbed-wire fence, but I squeezed in, thankful for my Outback’s AWD.

The smell of smoke hit me the second I opened my door, but I ignored the burning in my eyes and throat and got to work (I’m blessed to be in good health, with no respiratory problems). I grabbed my tripod from the back of the car, attached my Sony a7RIV, mounted my Sony 100-400, and crossed the road to set up as far from the trees as possible. It was about 45 minutes before sunset, but already the light felt like twilight. I thought I’d have about 30 minutes of shooting before the sun dipped below the hill, but framing up my first shot I realized that the sun was being swallowed by the smoke. Less than three minutes after I took this picture the sun was gone without a trace, not even a bright patch in the smoke, and I was done.

Workshop Schedule || Purchase Prints || Instagram   


California feels like ground-zero for climate change, so when I hear people’s indefensible explanations for why it’s not real (or why humans aren’t responsible), I get a little irritated. From many of the comments I’ve heard, it’s pretty clear that some people just don’t understand it well enough to have an opinion, so a couple of years ago I wrote a blog explaining climate change in the simplest terms possible. I updated and re-shared this blog on my Facebook page a few days ago, and while the response was largely positive, I did get some pushback from a couple of people who still don’t realize that the debate is over. So I’ve appended it to the bottom of this post (beneath the Sun and Smoke gallery). If you have doubts about climate change, please take the time to read it. And if you still have doubts, before you push back, please be prepared to answer two questions:

  1. Do you not believe the greenhouse effect is real?
  2. Or do you not believe that humans are adding enough greenhouse gases to our atmosphere to make a difference?

Sun and Smoke

Click an image for a closer look, and to view a slide show.



Gary Hart Photography: Sun and Smoke, Sierra Foothills, California

Sun and Smoke, Sierra Foothills, California
Sony a6300
Sony 100-400 GM
Sony 2x teleconverter
ISO 100
f/16
1/8 second

Humans, we have a problem

Earth’s climate is changing, and the smoking gun belongs to us. Sadly, in the United States policy lags insight and reason, and the world is suffering.

Climate change science is complex, with many moving parts that make it difficult to communicate to the general public. Climate change also represents a significant reset for some of the world’s most profitable corporations. Those colliding realities created a perfect storm for fostering the doubt and confusion that persists among people who don’t understand climate science and the principles that underpin it.

I’m not a scientist, but I do have enough science background (majors in astronomy and geology before ultimately earning my degree in economics) to trust the experts and respect the scientific method. I also spent 20 years doing technical communication in the tech industry (tech writing, training, and support) for companies large and small. So I know that the fundamentals of climate change don’t need to intimidate, and the more accessible they can be to the general public, the better off we’ll all be.

It’s personal

Recently it feels like I’ve been living on the climate change front lines. On each visit to Yosemite, more dead and dying trees stain forests that were green as recently as five years ago. And throughout the Sierra (among other places), thirsty evergreens, weakened by drought, are under siege by insects that now thrive in mountain winters that once froze them into submission. More dead trees means more fuel, making wildfires not just more frequent, but bigger and hotter.

Speaking of wildfires, for a week last month I couldn’t go outside without a mask thanks to smoke from the Camp Fire that annihilated Paradise (70 miles away). I have friends who evacuated from each of this November’s three major California wildfires (Camp, Hill, and Woolsey), and last December the Thomas Fire forced a two-week evacuation of Ojai, where my wife and I rent a small place (to be near the grandkids). Our cleanup from the Thomas fire took months, and we still find ash in the most unexpected places (and we were among the lucky who had a home to clean).

The debate is dead

Despite its inevitable (and long overdue) death, the climate change debate continues to stagger on like a mindless zombie. We used to have to listen to the skeptics claim that our climate wasn’t changing at all, so I guess hearing them acknowledge that okay-well-maybe-the-climate-is-changing-but-humans-aren’t-responsible can be considered progress.

Despite what you might read on social media or fringe websites, climate change alternative “explanations” like “natural variability” and “solar energy fluctuations” have been irrefutably debunked by rigorously gathered, thoroughly analyzed, and closely scrutinized data. (And don’t get me started on the whole “scientists motivated by grant money” conspiracy theory.)

Science we all can agree on

One thing that everyone does agree on is the existence of the greenhouse effect, which has been used for centuries to grow plants in otherwise hostile environments.

As you may already know, a greenhouse’s transparent exterior allows sunlight to penetrate and warm its interior. The heated interior radiates at longer wavelengths (infrared) that don’t escape as easily through the greenhouse’s ceiling and walls. That means more heat is added to a greenhouse than exits it, so the interior is warmer than the environment outside.

There’s something in the air

Perhaps the most common misperception about human induced climate change is that it’s driven by all the heat we create when we burn stuff. But that’s not what’s going on, not even close.

Our atmosphere behaves like a greenhouse, albeit with far more complexity. The sun bathes Earth with continuous electromagnetic radiation that includes infrared, visible light, and ultraviolet. Solar radiation not reflected back to space reaches Earth’s surface to heat water, land, and air. Some of this heat makes it back to space, but much is absorbed by molecules in Earth’s atmosphere, forming a virtual blanket that makes Earth warmer than it would be without an atmosphere. In a word, inhabitable.

Because a molecule’s ability to absorb heat depends on its structure, some molecules absorb heat better than others. The two most common molecules in Earth’s atmosphere, nitrogen (N2: two nitrogen atoms) and oxygen (O2: two oxygen atoms), are bound so tightly that they don’t absorb heat. Our atmospheric blanket relies on other molecules to absorb heat: the greenhouse gases.

Also not open for debate is that Earth warms when greenhouse gases in the atmosphere rise, and cools when they fall. The rise and fall of greenhouse gases has been happening for as long as Earth has had an atmosphere. So our climate problem isn’t that our atmosphere contains greenhouse gases, it’s that human activity changes our atmosphere’s natural balance of greenhouse gases.

Earth’s most prevalent greenhouse gas is water vapor. But water vapor responds quickly to temperature changes, leaving the atmosphere relatively fast as rain or snow, while other greenhouse gases hold their heat far longer.

The two most problematic greenhouse gases are carbon dioxide (CO2: one carbon atom bonded with two oxygen atoms) and methane (CH4: one carbon atom bonded with four hydrogen atoms). The common denominator in these “problem” gases is carbon. (There are other, non-carbon-based, greenhouse gases, but for simplicity I’m focusing on the most significant ones.)

Carbon exists in many forms: as a solo act like graphite and diamond, and in collaboration with other elements to form more complex molecules, like carbon dioxide and methane. When it’s not floating around the atmosphere as a greenhouse gas, carbon in its many forms is sequestered in a variety of natural reservoirs called a “carbon sink,” where it does nothing to warm the planet.

Oceans are Earth’s largest carbon sink. And since carbon is the fundamental building block of life on Earth, all living organisms, from plants to plankton to people, are carbon sinks as well. The carbon necessary to form greenhouse gases has always fluctuated naturally between the atmosphere and natural sinks like oceans and plants.

For example, a growing tree absorbs carbon dioxide from the atmosphere, keeping the carbon and expelling oxygen (another simplification of a very complex process)—a process that stops when the tree dies. As the dead tree decomposes, some of its carbon is returned to the atmosphere as methane, but much of it returns to the land where it is eventually buried beneath sediments. Over tens or hundreds of millions of years, some of that sequestered carbon is transformed by pressure and heat to become coal.

Another important example is oil. For billions of years, Earth’s oceans have been host to simple-but-nevertheless-carbon-based organisms like algae and plankton. When these organisms die they drop to the ocean floor, where they’re eventually buried beneath sediment and other dead organisms. Millions of years of pressure and heat transforms these ancient deposits into…: oil.

Coal and oil (hydrocarbons), as significant long-term carbon sinks, were quite content to lounge in comfortable anonymity as continents drifted, mountains lifted and eroded, and glaciers advanced and retreated. Through all this slow motion activity on its surface, Earth’s temperatures ebbed and flowed and life evolved accordingly.

Enter humans. We have evolved, migrated, and built civilizations based on a relatively stable climate. And since the discovery of fire we humans have burned plants for warmth and food preparation. Burning organic material creates carbon dioxide, thereby releasing sequestered carbon into the atmosphere. Who knew that such a significant advance was the first crack in the climate-change Pandora’s Box?

For thousands of years the demand for fuel was met simply by harvesting dead plants strewn about on the ground and the reintroduction of carbon to the atmosphere was minimal. But as populations expanded and technology advanced, so did humans’ thirst for fuel to burn.

We nearly killed off the whales for their oil before someone figured out that those ancient, subterranean metamorphosed dead plants burn really nicely. With an ample supply of coal and oil and a seemingly boundless opportunity for profit, coal and oil soon became the driving force in the world’s economy. Suddenly, hundreds of millions of years worth of sequestered carbon was being reintroduced to our atmosphere as fast as it could be produced—with a corresponding acceleration in greenhouse gases (remember, when we burn hydrocarbons, we create carbon dioxide).

Compounding the fossil-fuel-as-energy problem is the extreme deforestation taking place throughout the world. Not only does burning millions of forest and jungle acres each year instantly reintroduce sequestered carbon to the atmosphere, it destroys a significant sink for present and future carbon.

Scientists have many ways to confirm humans’ climate change culpability. The most direct is probably the undeniable data showing that for millennia carbon dioxide in Earth’s atmosphere hovered rather steadily around 280 parts per million (ppm). Then, corresponding to the onset of the Industrial Revolution in the late 18th century, atmospheric carbon dioxide has risen steadily and today sits somewhere north of 400 ppm, with a bullet.

Humans don’t get a pass on atmospheric methane either. While not nearly as abundant in Earth’s atmosphere as carbon dioxide, methane is an even more powerful greenhouse gas, trapping about 30 times more heat than its more plentiful cousin. Methane is liberated to the atmosphere by a variety of human activities, from the decomposition of waste (sewage and landfill) to agricultural practices that include rice cultivation and bovine digestive exhaust (yes, that would be cow farts).

While the methane cycle is less completely understood than the carbon dioxide cycle, the increase of atmospheric methane also correlates to fossil fuel consumption. Of particular concern (and debate) is the cause of the steeper methane increase since the mid-2000s. Stay tuned while scientists work on that….

Balancing act

For humans, the most essential component of Earth’s habitability is the precarious balance between water’s three primary states: gas (water vapor),  ice, and liquid. Since the dawn of time, water’s varied states have engaged in a complex, self-correcting choreography of land, sea, and air inputs—tweak one climate variable here, and another one over there compensates.

Earth’s climate remains relatively stable until the equilibrium is upset by external input like solar energy change, volcanic eruption, or (heaven forbid) a visit from a rogue asteroid. Unfortunately, humans incremented the list of climate catalysts by one with the onset of the Industrial Revolution, and our thirst for fossil fuels.

As we’re learning firsthand in realtime, even the smallest geospheric tweak can initiate a self-reinforcing chain reaction with potentially catastrophic consequences for humanity’s long-term wellbeing. For example, a warmer planet means a warmer ocean and less ice, which means more liquid water and water vapor. Adding carbon dioxide to water vapor kicks off a feedback loop that magnifies atmospheric heat: More carbon dioxide raises the temperature of the air—>warmer air holds more water vapor—>more water vapor warms the air more—>and so on.

But that’s just the beginning. More liquid water swallows coastlines; increased water vapor means more clouds, precipitation, and warmer temperatures (remember, water vapor is a greenhouse gas). Wind patterns and ocean currents shift, changing global weather patterns. Oh yeah, and ice’s extreme albedo (reflectivity) bounces solar energy back to space, so shrinking our icecaps and glaciers means less solar energy returned to space even more solar energy to warm our atmosphere, which only compounds the problems.

Comparing direct measurements of current conditions to data inferred from tree rings, ice and sediment cores, and many other proven methods, makes it clear that human activity has indeed upset the climate balance: our planet is warming. What we’re still working on is how much we’ve upset it (so far), what’s coming, and where the tipping point is (or whether the tipping point is already in our rearview mirror).

We do know that we’re already experiencing the effects of these changes, though it’s impossible to pinpoint a single hurricane, fire, or flood and say this one wouldn’t have happened without climate change. And contrary to the belief of many, everyone will not be warmer. Some places are getting warmer, others are getting cooler; some are wetter, others are drier. The frequency and intensity of storms is changing, growing seasons are changing, animal habitats are shifting or shrinking, and the list goes on….

We won’t fix the problem by simply adjusting the thermostat, building dikes and levees, and raking forests. Until we actually reduce greenhouse gases in our atmosphere, things will get worse faster than we can adjust. But the first step to fixing a problem is acknowledging we have one.

About this image

Gary Hart Photography: Sun and Smoke, Sierra Foothills, California

Sun and Smoke, Sierra Foothills, California

The Camp Fire had been burning for ten days, devouring Paradise and filling the air in Sacramento with brown smoke so thick that at times not only could we not see the sun, we couldn’t see the end of the block. But on this afternoon, when an orange ball of sun burned through the smoke I donned a mask, grabbed my camera bag, and headed for the hills.

I have a collection of go-to foothill oak trees for sun and moonsets, but most of these trees are too close to my shooting position for the extreme telephoto image I had in mind. Too close because at this kind of focal length, the hyperfocal distance is over a mile. So I made my way to a quiet country road near Plymouth where I thought the trees might just be distant enough to work. But I’m less familiar with this location than many of my others, so I didn’t know exactly how the trees and sun would align. Turning onto the road, I drove slowly, glancing at the sun and trees until they lined up. Because there wasn’t a lot of room to park on either side, I was pleased that the shoulder at the location that worked best was just wide enough for my car.

Envisioning a maximum telephoto shot, I added my Sony 2X teleconverter to my Sony 100-400 GM lens. While my plan was to use my 1.5-crop Sony a6300, when I arrived the sun was high enough that that combination provided too much magnification, so I started with my full frame Sony a7RIII. But soon as the sun dropped to tree level I switched to the a6300 and zoomed as tight as possible.

When I started the sun was still bright enough that capturing its color made the trees complete silhouettes, with no detail or color in the foreground. But as the setting sun sank into increasingly thick smoke, it became redder and redder and my exposure became easier. It always surprises me how fast the sun and moon move relative to the nearby horizon, so found myself running around to different positions to get the right sun and tree juxtaposition as the sun fell. The smoke near the horizon was so thick that it swallowed the sun before it actually set.

Later I plotted my location and the sun’s position on a map and realized that I was pointing right at San Francisco, about 100 miles away, with a large swath of the Bay Area in between. Then I thought about this air that was thick enough to completely obscure the sun, and the millions of people who had been breathing that air for weeks.

I’d be lying if I said I don’t like this image—it’s exactly what I was going for. But I’d be very happy if I never got another opportunity to photograph something like this.

Learn more

Workshop Schedule || Purchase Prints


Solar Energy

Click an image for a closer look and slide show. Refresh the window to reorder the display.

8 Comments on “California Burning

  1. Sorry Gary. I’ve had enough of your political rants. It’s not why I signed up for your blog. I’ll be moving on.

    Sent from my iPad

    >

  2. I get it Gary. I split the climate change argument into two sections for the difficult people. Section number one: is anything noticeable happening? We get that settled, we then go into what’s causing it. That sometimes helps. But usually, with people like that, I just skip it. By the way, the earth is flat as well.

    I’m reminded of a shot I did at Lake Tahoe in 2015. See the link attached. Wish I had been using a better lens, but still, you can see. Sunspots. That smoke is one hell of a filter. “Hell” used advisedly. https://amagablog.com/2019/03/13/sunrise-smoke-spots/

    • Yeah, there are some people who just aren’t interested in, or capable of, understanding the science. I’ve gotten a little bit of negative push-back, but it’s all been emotional hyperbole—I’ve yet to hear a single point from anyone that indicates these people comprehend the science (maybe because they know that if they did, they’d have to change their mind).

      • Changing one’s mind is the last thing one wants to do when one is all in on their current path. For some it’s a matter of noncomprehension; for others it a matter of choice. Their heels must get pretty tired, being dug in so hard.

  3. This has been a hard time in CA for sure – please stay safe up there. May we all take better care of our planet and each other ❤

    • Thank you, MB. I don’t have to worry about fires here, but the smoke is relentless. I was finally able to open my windows yesterday (first time in 2 weeks), but the wind shifted and today everything’s shut down again. Sadly, these things are becoming annual events. I can’t wait for the rain to start so we can breathe again. 😄

What do you think?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: